隔离式双向功率转换器的数字控制设计的具体方案实现_华体会体育登录_华体会登录体育网

隔离式双向功率转换器的数字控制设计的具体方案实现

日期:2024-03-06 发布人: 华体会体育登录

  ,使其除了具有标准的正向功率传输(FPT)功能外,还支持反向功率传输(RPT)功能。文中将介绍系统建模、,并通过实验对理论概念进行了验证。应用表明,在两个能量传输方向上,转换效率始终高于94%。

  模块化电池储能系统(ESS)有助于可再生电力的有效利用,因而是构建绿色能源ECO的关键技术。梯次利用电池ESS应用日趋广泛。在这个子市场中,预计高达80%的废弃电池会用于ESS,在固定电网服务中焕发新生,从而将电池的常规使用的寿命从5年延长到15年。预计到2030年,这些系统会给电网增加1 TWh的容量。在不久的将来,这种新兴应用必将在能源市场中变得更重要。

  典型实现方案是将不同电池模组堆叠起来,通过功率转换器将其能量传输到集中式交流或直流母线(随后以某种形式将能量分配给负载)。此类系统的挑战在于,每个模组具有不一样的化学组成、容量和老化曲线。在传统的模块化拓扑中,最弱的模组会影响整个电池堆的总可用容量(图1)。

  为了解决这一限制,在图2所示的架构中,电池堆中的能量通过每个电池模组的单独DC-DC转换器传输到公共中间直流母线。然后,该能量通过主功率转换器支持集中式中压(MV)交流或直流母线中的电压和功率水平是依据市场上ESS的典型数据选择的:48 V电池模组、400 V (DC)中间直流母线 kW以上(高功率)主功率转换器以及高达1500 V的集中式母线.基于电池的模块化ESS

  MCU)。尽管如此,由于各种工业应用更加重视功能安全(FS),因此使用专用数字控制器可能更有优势。从系统模块设计的角度来看,更简单的功能安全认证可以简化设计过程,从而缩短总体开发时间,更快获取收益,因此在模块化实施中特别有利。专用数字控制器优于MCU的一些原因概述如下。微控制器依赖于软件,包含的状态数量较多,被认为不稳定,因此在IEC 61508标准制定之前,安全系统中不允许使用微控制器。MCU的大量功能安全工作都在软件开发阶段。

  过流保护(OCP)、过压保护(OVP)、欠压保护(UVLO)和过温保护(OTP)。与市场上许多现成的等效器件一样,该控制器设计用于单向能量传输,即FPT。为实现双向操作,使用该控制器的应用一定要进行调整,以便也能在RPT下工作。下一部分将探讨对FPT和RPT模式都很重要的一个方面,即目标DC-DC转换器的效率,在调整过程开始之前一定要了解这一点。

  电流馈送推挽式转换器到全桥同步整流器。为说明应用的常见挑战,图中显示了一个典型用例,其初级(直流母线 V (DC),次级(电池模组)为48 V (DC),功率水平大于1 kW。使用 LTspice对开关频率为100 kHz的典型宽带隙(WBG)功率器件的操作进行仿真。仿线.仿线b中的结果为,当使用常规硬开关(HS) PWM时,较高功率水平下的效率迅速下降。将RPT与FTP作比较时,这一点更突出。为了改进操作,我们确定了两种主要损耗机制,通过下文说明的相应开关技术能降低损耗。软开关:图4a显示在这种低漏感设计中,当使用常规PWM时,初级开关MA和MB在无源到有源开关转换过程中不会快速关断。这种状况会在总系统中产生较高的开关损耗。在这种情况下,使用相移(PS) PWM(亦称零电压开关(ZVS)或软开关)有助于在这些转换期间将漏源电压降至零。为此,我们大家可以提供与负载相关的适当死区时间,使得开关的漏源电容可以完全放电。应用相移的结果如图4b所示。

  图4.初级开关无源到有源转换:(a) HS PWM,(b) PS PWM

  有源箝位:图5a显示在次级开关MR1和MR2关断期间,在其漏源电压上观察到很大的尖峰和振铃。这些瞬态事件会危及开关的完整性,浪费能量,并导致电磁干扰(EMI)。使用附加开关(例如图3中的MCLAMP)实现数字控制有源箝位是减轻该尖峰负面影响的较佳备选方案。这样做才能够进一步提高该架构的效率。应用某种形式有源箝位的结果如图5b所示。

  图5.初级开关无源到有源转换:(a) HS PWM,(b) PS PWM实施这些策略后,5 kW时RPT模式下的转换器效率从不足80%提高到90%以上。这些仿真研究也预测到FPT和RPT具有相似的效率,如图3b所示。

  驱动器ADuM3223 来导通和关断四个初级开关。这些驱动器的精密时序特性(隔离器和驱动器最大传播延迟为54 ns)可准确地将控制信号反映到PWM中。

  发生交换,以便在控制器的端子CS2+和CS2-上以正确的方向测量整个转换器的变压器次级的输出电流。最后,隔离式

  ADuM4195用于安全、准确地测量直流母线电压。在RPT模式下,直流母线电压是输出变量,而在FPT模式下,电池侧电压是受控输出。基于ADuM4195的测量方案是对控制环路硬件的一项重要补充。除了安全的5 kV隔离电压(从高压初级侧到低压控制侧)、多达4.3 V的宽输入范围以及精度约为0.5%的基准电压外,ADuM4195还有高达200 kHz的最小带宽。与典型的并联稳压器和

  合器解决方案相比,它支持实现更快的环路操作,从而提供更好的瞬态响应,这对于应用在125 kHz开关频率下的运行至关重要。图7显示了最终的实验装置,图6中增加的硬件在基于ADuM4195的测量子卡中实现,该子卡已添加到ADP1055-EVALZ用户指南中的原始评估板中。

  图6(下)还描述了为适应RPT在软件方面的配置。我们深入研究了数字控制管理系统

  通过更改PWM设置,使占空比变化与次级电感充电成比例,来实现正确的稳态响应。这是根据该架构在RPT模式下的升压型操作而得出的。我们采用ADP1055-EVALZ用户指南中设计的LCL输出滤波器

  fication Toolbox,根据用作隔离跟随器的ADuM4195的频率响应,对反馈测量Gm(s)进行建模(图8)。经确认,主导极点在200 kHz左右,可确保在控制管理系统的目标带宽(250 kHz可观测双频的10%左右)之上仍能提供快速响应。

  我们选择在控制器的标准数字补偿器中添加一个极点,以减少整体控制系统的带宽,这在这种非最小相位升压式转换器设备中是必要的。因此,个人会使用公式1中的数字控制器(常数定义参见 ADP1055用户指南)。

  为将分析保持在拉普拉斯域内,我们根据数字控制理论创建了Gc(z)的连续时间模型Gc(s)。因此,首先添加一个计算延迟(× z-1),而连续时间中的最终表示通过如下方式实现:利用(a) Tustin近似

  图9.ADP1055上配置的数字滤波器响应我们还配置了上一节中研究的提高效率功能(具有自适应死区时间和有源箝位的PS PWM)。实验发现,为了在RPT的有源到无源转换中实现适当的ZVS,有必要修改PWM序列中的死区时间。具体来说,我们修改了次级开关的导通时间点,使其发生在每次有源到无源转换间隔之前,以允许电流反向。

  TDEV)分别为0.1%和0.02%,如图10a所示。图10b和图10c分别显示了转换效率和对50%负载变化的阶跃响应。两种情况下,RPT模式下的效率水平都与FPT模式相似,在中等功率范围内的峰值效率为94%。阶跃响应参数(过冲和建立时间)在RPT模式下为(1%; 1.5 ms),而在FPT模式下为(2%; 800 μs)。我们观察到,较低的过冲,稍慢的建立时间,构成稳定的瞬态响应。这些结果证明,调整数字控制器以支持双向功率传输的设计过程是有效和成功的。

  图10.RPT模式下得到的(a)输出电压调节、(b)效率和(c) 50%负载阶跃响应

  为在能源市场中实现安全可靠的应用,采用功率转换专用数字控制器是一种不错的备选方案。这是因为,与微控制器相比,数字控制器有助于简化功能安全认证,从而缩短系统级设计时间,更快地获取收益。这一些器件通常是针对单向功率传输构建的,本文探讨了怎么样做修改以支持双向操作。通过理论模型、仿真和实验研究展示了隔离式双向DC-DC转换器在基于电池的ESS中的应用。结果验证了该应用的可行性,两个方向的能量传输实现了相似的性能。

上一篇:品牌-电子发烧友网

下一篇:【48812】晶丰明源:应用于大、小家电的ACDC电源办理芯片现在已完成多家品牌客户打破

返回新闻列表